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1. Thermoplastic Composite Manufacturing 

Long fiber-reinforced thermoplastics (LFTs) have received a lot of attention in the automotive 
industry due to the improved mechanical properties that can be achieved and the relative ease of 
fabrication and handling of these materials (1).  The global use of LFTs is expected to grow from 
around 18 million kg (40 million lb) in 2001 to 34 million kg (75 million lb) in 2007 (2).  Long 
fibers (fiber lengths between 12 and 50 mm) provide elastic modulus and the tensile strength 
close to 90% of that obtained using continuous fibers (3) (figure 1).  The main advantage of 
LFTs is that unlike continuous fiber reinforced composites, they can be processed using 
traditional plastics molding equipment and therefore parts can be manufactured at medium 
volume rates with excellent consistency and repeatability.  The use of a thermoplastic matrix 
gives the molder the ability to modify and enhance the properties of the resin by blending 
additives, fillers, and fire retardants depending on the nature of the application (4).   
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Figure 1.  Effect of glass fiber length on composite properties (3). 

LFTs can be manufactured using conventional extrusion-compression molding and/or injection-
molding techniques.  Most of the applications in which LFTs have been commercialized include 
a polypropylene (PP) matrix and E-glass fiber reinforcement.  In the last few years, there have 
been interesting innovative developments focused on automation of these processes that increase 
the output rate, such as D-LFT, S-LFT and E-LFT (1).  Variations of these processes have also 
been used to produce sheets starting with neat resins and fiber rovings (4).  Advances have also 
led to the utilization of a wide variety of engineering thermoplastics as matrix materials along 
with other fiber reinforcements (2). 
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Compression molding is an established composite-processing technique which was originally 
developed for the stamping of thermoset matrix composite pre-impregnated sheets to complex 
geometries.  In this process, a pre-impregnated sheet molding compound (SMC) is heated to its 
softening point, and then transferred to a compression-molding press, where the sheet is formed 
using double-sided tooling (aluminum, steel, or epoxy).  The important feature of this process is 
that during forming, the material is not subjected to high levels of stress as in injection molding, 
and therefore the reinforcement is not damaged (5).  In the case of LFT-compression molding, 
the process begins by hot-melt impregnating reinforcing fibers with a thermoplastic matrix and 
subsequently chopping the continuous tow into pellets of a set length (between 8 and 50 mm) 
(figure 2).  Hot-melt impregnation is performed by wire coating, crosshead extrusion, and/or 
thermoplastic pultrusion (3).  The long fiber pellets are fed into the hopper of a single-screw, 
low-shear extruder.  A molten charge of a predetermined size and shape (usually cylindrical) is 
extruded, which is then transferred by an operator (or a robot) to the compression-molding press 
for the forming operation (figure 3). 

  

Take Up [7] 
Pelletizer[6] 

Puller[5] 
Extruder [3] 

Chiller[8] 

Cooled Rollers[4] 

Let-Off [1] 

Impregnation Chamber [2]

 

Figure 2.  Hot-melt impregnation line for production of thermoplastic composite pellets and tape (courtesy:  
National Composite Center). 

Cycle times for this process can be as short as one part per minute, and the production rate can be 
accelerated by utilizing multiple cavity tools.  The extrusion-compression molding is ideal for 
small-to-medium sized semi-structural components for the automotive industry and has already 
been implemented in applications such as automotive side panels, bumper beams, dash boards, 
underbody panels, and hoods.  The potential for using thermoplastic LFT technology in other 
applications such as military components, infrastructure and aerospace is expanding due to the 
cost-effective nature of the resins and processing methods. 
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Figure 3.  Extrusion compression molding line for LFT (courtesy:  National Composite Center). 

2. Kinetic-Energy Penetrator   

A kinetic-energy (KE) penetrator is one of the ammunition types used by the military as the main 
ammunition on tanks.  A KE projectile is comprised of three parts:  (1) the nosecone, tailored for 
aerodynamics and penetration; (2) the projectile mass rod, where most of the projectile’s mass is 
concentrated to achieve a high KE during impact; and (3) the tailcone, which is aerodynamically 
designed to induce drag and stabilize the projectile by inducing rotation.  In the field, the 
stabilizer used in the KE projectile includes a finned assembly, but, in the case of training 
rounds, the use of fin-stabilized rounds is not required.  Instead, a grooved stabilizer made of 
machined aluminum is used.  The projectile is encapsulated in a shell and it is fired by the 
combustion of a propellant inside the chamber (6).   

The use of a plastic tailcone for a KE penetrator training round was investigated by Garner et al. 
(7).  From this study, it was evident that by manufacturing the tailcone using a conventional 
plastic processing route such as injection molding, significant cost savings could be achieved 
when compared to an aluminum-machined tailcone that is currently used.  Studies by Garner 
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et al. (7) also demonstrated that select commercial polymers could withstand the extreme 
conditions witnessed during firing inside the barrel, and the pressure drop during the muzzle exit 
of the projectile.  However, the cost of the proposed polymer resins (poly ether ether ketone 
[PEEK]) in their study is relatively high and currently runs about $96/kg ($44/lb) (8).  In this 
study, the manufacturing of a thermoplastic composite tailcone made of nylon66/glass LFT is 
discussed.  The focus of this work is to demonstrate the feasibility of producing a thermoplastic 
tailcone that is both cost-effective and easy to process in a medium-volume production 
environment. 

3. Material Selection 

Several high-performance materials have been investigated for use in a training projectile for 
military ammunition.  Both thermoset and thermoplastic polymers, fiber-reinforced, and 
unreinforced polymers have been field tested under high pressures and accelerations experienced 
during firing of the projectile with mixed results (9).  The extreme loading conditions witnessed 
by the sub-components inside the bore and in the transition loads at the muzzle end must be 
taken into account during the material selection process.  A detailed finite-element analysis 
(FEA) based study was conducted (10) based upon which long-fiber-reinforced polyamide 
(nylon (wF = 10%, and wF = 40%) was chosen for this application.   

4. Manufacturing 

Presently, the all-aluminum tailcone is manufactured from aluminum bar stock which is 
manually fed to a computer numeric controlled (CNC) mill and machined down to close-
tolerance (figure 4).  The estimated machining time for these parts is about 5 hr followed by 
surface-finishing operations.  Extrusion-compression molding of LFTs was chosen as the 
manufacturing process in this study, since it met the requirements of low cycle time and retention 
of fiber integrity during processing.   

A single-cavity steel tool was developed for the compression molding of the LFT thermoplastic 
tailcone.  The tool was designed to have enough flexibility that would allow some changes in the 
design without major tooling re-engineering.  The conceptual schematic for molding the plastic 
tailcone is presented in figure 4.  A four-component, compression-molding tool featured a top 
lid, an interchangeable block, a cap, and a solid cavity.  The solid female tool includes the 
external geometry of the tailcone and the spin grooves.  The interchangeable block allows for the 
manufacturing of a hollow-back tailcone or solid-back tailcone, depending on the desired shape.  
The cap allows for insert positioning previous to the molding and facilitates the demolding  
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Figure 4.  Molding concept for manufacturing of plastic tailcones:  (a) exploded view and (b) cross section. 

operation.  This cap includes the inner threads that assemble to the back of the KE projectile.  
The molten charge is placed in the solid cavity and formed by the pressure exerted during closing 
of the press to the final shape.  

An internal insert made of steel was used in order to adapt the existing threads of the aluminum 
tailcone.  Several insert designs were considered, and two final concepts were chosen for the 
molding trials.  Two insert configurations were used; a fully threaded insert and a partially 
threaded beaded insert.  The cross-sectional view of the LFT tailcone with the two types of 
inserts (for the case of the hollow-back tailcone) is shown in figure 5.  

 

          

a) b) 

 

Figure 5.  Cross section of LFT composite tailcone showing detail on inserts used during molding trials of hollow-
back thermoplastic composite tailcones:  (a) threaded insert and (b) beaded insert.   
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Straight-threaded aluminum inserts, 95 and 100 mm long, were used when molding the back-
filled LFT composite tailcone.  The cross section of the back-filled tailcone solid model is shown 
in figure 6. 

 

Figure 6.  Back-filled LFT composite tailcone cross section. 

5. Molding 

A 400,000 kg (400 metric ton) press was used to mold the LFT composite tailcone.  The initial 
set of tail cones was molded using nylon 66/E-glass LFT with 40% Wf (table 1).  The second set 
of tail cones was molded using nylon 66/E-glass LFT with 10% Wf. The two fiber loadings 
represent a high- and low-fiber-loading case respectively, and demonstrate the flexibility of the 
extrusion-compression molding process.  The aluminum insert was screwed to the cap and 
placed inside the solid cavity of the tool prior to LFT charge placement.  The temperature of the 
bottom cavity of the mold was raised to 121 °C (250 °F).  The plasticator was set at 287 °C 
(550 °F). Once the extruded charge was transferred from the plasticator to the mold, the press 
was lowered and a 300,000-kg (300-metric-ton) force was applied to consolidate the LFT charge 
around the insert. The mold was cooled in air and demolded.  The manufacturing cycle time was 
approximately 60 s.  The molded nylon LFT 40% Wf thermoplastic composite hollow-back 
tailcones are shown in figure 7, alongside the all-aluminum tailcone and some of the inserts used 
in the first molding trials. 



 

Table 1.  Physical, mechanical, and thermal properties of nylon 66 (PA) long glass fiber. 

Physical Properties English Metric ASTM 
Primary additive 50% 50% — 
Specific gravity 1.57 1.57 D 792 
Molding shrinkage  
1/8-in (3.2-mm) section 0.0010–0.0030 in/in 0.10%–0.30% D 955 

Mechanical Properties 
Impact strength, Izod  
Notched 1/8-in (3.2-mm) section 5.0 ft-lb/in 267 J/m D 256 
Unnotched 1/8-in (3.2-mm) section 24.0 ft-lb/in 1281 J/m D 4812 
Tensile strength 35000 psi 241 MPa D 638 
Tensile elongation 2.0%–3.0% 2.0%–3.0% D 638 
Tensile modulus 2.50 × 106 psi 17238 MPa D 638 
Flexural strength 50000 psi 345 MPa D 790 
Flexural modulus 2.30 × 106 psi 15858 MPa D 790 

Thermal Properties 
Deflection temperature  
At 264 psi (1820 kPa) 460 °F 238 °C D 648 
At 66 psi (455 kPa) 475 °F 246 °C D 648 

 
 

Aluminum 
 
 
XM1002 

 
LFT  
 
 
GLass/Nylon 

 

Figure 7.  Molded thermoplastic composite tailcone, 
aluminum inserts, and aluminum tailcone. 

The second molding trials were performed using 0% (neat nylon 66), 10%, and 40% Wf LFT 
pellets under the same processing conditions previously described.  The second molding attempt 
concentrated on the manufacture of the back-filled tailcones.  Cost analysis comparing an all-
aluminum vs. an LFT composite tailcone as well as microstructural studies were conducted to 
evaluate the volume fractions, fiber lengths, and fiber orientations developed in the tailcone by 
burn-off studies (11).  To minimize the effect of thermal stresses developed during the cooling 
cycle of the tailcones, moldings were cooled using different cooling rates and under different 
conditions. 
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The produced back-filled cones are shown in figure 8.  Once they were visually inspected, they 
were sectioned and polished to assess the quality of the molded parts.  The tailcones molded with 
pure nylon showed severe external cracks induced by the excessive shrinkage of the polymer 
during the cooling stage (figure 9) and were discarded for any further analysis. 

 

     

a) b) 

 

Figure 8.  (a) Back-filled cones produced during second molding trials using neat nylon 66 (white cone), 10% (right) 
and 40% Wf glass LFT (left).  (b) Detail showing as produced hollow-back tailcone (first molding) and 
back-filled version (second molding). 

 

       
cracks 

cracks 

 

Figure 9.  Cross-section image of neat nylon 66 tailcone and detail on thermally induced cracks. 

The tailcones molded with a glass fiber loading of 10% Wf showed small signs of warpage.  The 
tailcones molded with 40% Wf  did not show any significant signs of processing induced flaws.  
Once the visual inspection was finished, both the 10% and the 40% Wf loaded cones were 
sectioned to determine the porosity and the occurrence on internal flaws.  The cross-section 
images for the 10% and 40% moldings are shown in figures 10 and 11.  It is clear that the  
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Figure 10.  Cross-section image of 10% Wf nylon 66 tailcone and detail on porosity and thermal stress 
induced crack. 

 

     
 

Figure 11.  Cross-section image of 40% Wf nylon 66 tailcone and detail on minor crack formation at 
the edge of the tailcone. 

increase in fiber loading on the part restricts the crack formation due to thermal stresses and 
reduces thermally induced flaws (as the glass fiber content increases, the CTE is lowered).  The 
internal cracks observed on the 10% Wf moldings are highly developed and can affect the 

 9



 

 10

performance of the tailcones significantly during firing.  There were some small cracks observed 
on the 40% moldings, but these are not expected to be a detriment to the structural integrity due 
to their location and size.  To minimize the probability of thermal cracking inside the cones the 
upper tool temperature was increased and the resident time in the press during cooling was 
adjusted to 3 min. 

6. Summary 

Thermoplastic composites can be used effectively in replacing metal components that require 
extensive machining, such as in the case of an all-aluminum tailcone used in a KE penetrator.  
Long fiber thermoplastic-composite tailcones with hollow-back and back-filled configuration 
were manufactured successfully using extrusion-compression molding.  Processing issues related 
to optimum resident time in the press and upper- and lower-tool temperatures were optimized to 
produce good quality moldings.  A projected 230% cost savings is realized in adopting the long 
fiber thermoplastic tailcone in place of an all-aluminum one, for training round applications.  
Successful firing trials have been conducted with the 40% LFT filled nylon 66 tailcones; 
furthermore, the projectiles stabilized by the thermoplastic-composite tailcone hit the desired 
location in the target. 
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